精品专区-精品自拍9-精品自拍三级乱伦-精品自拍视频-精品自拍视频曝光-精品自拍小视频

網站建設資訊

NEWS

網站建設資訊

c語言聲明函數在主函數后,c語言可以在主函數里定義函數嗎

后端編程Python3-調試、測試和性能剖析(下)

單元測試(Unit Testing)

創新互聯是專業的濮陽縣網站建設公司,濮陽縣接單;提供網站設計制作、成都網站設計,網頁設計,網站設計,建網站,PHP網站建設等專業做網站服務;采用PHP框架,可快速的進行濮陽縣網站開發網頁制作和功能擴展;專業做搜索引擎喜愛的網站,專業的做網站團隊,希望更多企業前來合作!

為程序編寫測試——如果做的到位——有助于減少bug的出現,并可以提高我們對程序按預期目標運行的信心。通常,測試并不能保證正確性,因為對大多數程序而言, 可能的輸入范圍以及可能的計算范圍是如此之大,只有其中最小的一部分能被實際地進 行測試。盡管如此,通過仔細地選擇測試的方法和目標,可以提高代碼的質量。

大量不同類型的測試都可以進行,比如可用性測試、功能測試以及整合測試等。這里, 我們只講單元測試一對單獨的函數、類與方法進行測試,確保其符合預期的行為。

TDD的一個關鍵點是,當我們想添加一個功能時——比如為類添加一個方法—— 我們首次為其編寫一個測試用例。當然,測試將失敗,因為我們還沒有實際編寫該方法。現在,我們編寫該方法,一旦方法通過了測試,就可以返回所有測試,確保我們新添加的代碼沒有任何預期外的副作用。一旦所有測試運行完畢(包括我們為新功能編寫的測試),就可以對我們的代碼進行檢查,并有理有據地相信程序行為符合我們的期望——當然,前提是我們的測試是適當的。

比如,我們編寫了一個函數,該函數在特定的索引位置插入一個字符串,可以像下面這樣開始我們的TDD:

def insert_at(string, position, insert):

"""Returns a copy of string with insert inserted at the position

string = "ABCDE"

result =[]

for i in range(-2, len(string) + 2):

... result.append(insert_at(string, i,“-”))

result[:5]

['ABC-DE', 'ABCD-E', '-ABCDE','A-BCDE', 'AB-CDE']

result[5:]

['ABC-DE', 'ABCD-E', 'ABCDE-', 'ABCDE-']

"""

return string

對不返回任何參數的函數或方法(通常返回None),我們通常賦予其由pass構成的一個suite,對那些返回值被試用的,我們或者返回一個常數(比如0),或者某個不變的參數——這也是我們這里所做的。(在更復雜的情況下,返回fake對象可能更有用一一對這樣的類,提供mock對象的第三方模塊是可用的。)

運行doctest時會失敗,并列出每個預期內的字符串('ABCD-EF'、'ABCDE-F' 等),及其實際獲取的字符串(所有的都是'ABCD-EF')。一旦確定doctest是充分的和正確的,就可以編寫該函數的主體部分,在本例中只是簡單的return string[:position] + insert+string[position:]。(如果我們編寫的是 return string[:position] + insert,之后復制 string [:position]并將其粘貼在末尾以便減少一些輸入操作,那么doctest會立即提示錯誤。)

Python的標準庫提供了兩個單元測試模塊,一個是doctest,這里和前面都簡單地提到過,另一個是unittest。此外,還有一些可用于Python的第三方測試工具。其中最著名的兩個是nose (code.google.com/p/python-nose)與py.test (codespeak.net/py/dist/test/test.html), nose 致力于提供比標準的unittest 模塊更廣泛的功能,同時保持與該模塊的兼容性,py.test則采用了與unittest有些不同的方法,試圖盡可能消除樣板測試代碼。這兩個第三方模塊都支持測試發現,因此沒必要寫一個總體的測試程序——因為模塊將自己搜索測試程序。這使得測試整個代碼樹或某一部分 (比如那些已經起作用的模塊)變得很容易。那些對測試嚴重關切的人,在決定使用哪個測試工具之前,對這兩個(以及任何其他有吸引力的)第三方模塊進行研究都是值 得的。

創建doctest是直截了當的:我們在模塊中編寫測試、函數、類與方法的docstrings。 對于模塊,我們簡單地在末尾添加了 3行:

if __name__ =="__main__":

import doctest

doctest.testmod()

在程序內部使用doctest也是可能的。比如,blocks.py程序(其模塊在后面)有自己函數的doctest,但以如下代碼結尾:

if __name__== "__main__":

main()

這里簡單地調用了程序的main()函數,并且沒有執行程序的doctest。要實驗程序的 doctest,有兩種方法。一種是導入doctest模塊,之后運行程序---比如,在控制臺中輸 入 python3 -m doctest blocks.py (在 Wndows 平臺上,使用類似于 C:Python3 lpython.exe 這樣的形式替代python3)。如果所有測試運行良好,就沒有輸出,因此,我們可能寧愿執行python3-m doctest blocks.py-v,因為這會列出每個執行的doctest,并在最后給出結果摘要。

另一種執行doctest的方法是使用unittest模塊創建單獨的測試程序。在概念上, unittest模塊是根據Java的JUnit單元測試庫進行建模的,并用于創建包含測試用例的測試套件。unittest模塊可以基于doctests創建測試用例,而不需要知道程序或模塊包含的任何事物——只要知道其包含doctest即可。因此,為給blocks.py程序制作一個測試套件,我們可以創建如下的簡單程序(將其稱為test_blocks.py):

import doctest

import unittest

import blocks

suite = unittest.TestSuite()

suite.addTest(doctest.DocTestSuite(blocks))

runner = unittest.TextTestRunner()

print(runner.run(suite))

注意,如果釆用這種方法,程序的名稱上會有一個隱含的約束:程序名必須是有效的模塊名。因此,名為convert-incidents.py的程序的測試不能寫成這樣。因為import convert-incidents不是有效的,在Python標識符中,連接符是無效的(避開這一約束是可能的,但最簡單的解決方案是使用總是有效模塊名的程序文件名,比如,使用下劃線替換連接符)。這里展示的結構(創建一個測試套件,添加一個或多個測試用例或測試套件,運行總體的測試套件,輸出結果)是典型的機遇unittest的測試。運行時,這一特定實例產生如下結果:

...

.............................................................................................................

Ran 3 tests in 0.244s

OK

每次執行一個測試用例時,都會輸出一個句點(因此上面的輸出最前面有3個句點),之后是一行連接符,再之后是測試摘要(如果有任何一個測試失敗,就會有更多的輸出信息)。

如果我們嘗試將測試分離開(典型情況下是要測試的每個程序和模塊都有一個測試用例),就不要再使用doctests,而是直接使用unittest模塊的功能——尤其是我們習慣于使用JUnit方法進行測試時ounittest模塊會將測試分離于代碼——對大型項目(測試編寫人員與開發人員可能不一致)而言,這種方法特別有用。此外,unittest單元測試編寫為獨立的Python模塊,因此,不會像在docstring內部編寫測試用例時受到兼容性和明智性的限制。

unittest模塊定義了 4個關鍵概念。測試夾具是一個用于描述創建測試(以及用完之后將其清理)所必需的代碼的術語,典型實例是創建測試所用的一個輸入文件,最后刪除輸入文件與結果輸出文件。測試套件是一組測試用例的組合。測試用例是測試的基本單元—我們很快就會看到實例。測試運行者是執行一個或多個測試套件的對象。

典型情況下,測試套件是通過創建unittest.TestCase的子類實現的,其中每個名稱 以“test”開頭的方法都是一個測試用例。如果我們需要完成任何創建操作,就可以在一個名為setUp()的方法中實現;類似地,對任何清理操作,也可以實現一個名為 tearDown()的方法。在測試內部,有大量可供我們使用的unittest.TestCase方法,包括 assertTrue()、assertEqual()、assertAlmostEqual()(對于測試浮點數很有用)、assertRaises() 以及更多,還包括很多對應的逆方法,比如assertFalse()、assertNotEqual()、failIfEqual()、 failUnlessEqual ()等。

unittest模塊進行了很好的歸檔,并且提供了大量功能,但在這里我們只是通過一 個非常簡單的測試套件來感受一下該模塊的使用。這里將要使用的實例,該練習要求創建一個Atomic模塊,該模塊可以用作一 個上下文管理器,以確保或者所有改變都應用于某個列表、集合或字典,或者所有改變都不應用。作為解決方案提供的Atomic.py模塊使用30行代碼來實現Atomic類, 并提供了 100行左右的模塊doctest。這里,我們將創建test_Atomic.py模塊,并使用 unittest測試替換doctest,以便可以刪除doctest。

在編寫測試模塊之前,我們需要思考都需要哪些測試。我們需要測試3種不同的數據類型:列表、集合與字典。對于列表,需要測試的是插入項、刪除項或修改項的值。對于集合,我們必須測試向其中添加或刪除一個項。對于字典,我們必須測試的是插入一個項、修改一個項的值、刪除一個項。此外,還必須要測試的是在失敗的情況下,不會有任何改變實際生效。

結構上看,測試不同數據類型實質上是一樣的,因此,我們將只為測試列表編寫測試用例,而將其他的留作練習。test_Atomic.py模塊必須導入unittest模塊與要進行測試的Atomic模塊。

創建unittest文件時,我們通常創建的是模塊而非程序。在每個模塊內部,我們定義一個或多個unittest.TestCase子類。比如,test_Atomic.py模塊中僅一個單獨的 unittest-TestCase子類,也就是TestAtomic (稍后將對其進行講解),并以如下兩行結束:

if name == "__main__":

unittest.main()

這兩行使得該模塊可以單獨運行。當然,該模塊也可以被導入并從其他測試程序中運行——如果這只是多個測試套件中的一個,這一點是有意義的。

如果想要從其他測試程序中運行test_Atomic.py模塊,那么可以編寫一個與此類似的程序。我們習慣于使用unittest模塊執行doctests,比如:

import unittest

import test_Atomic

suite = unittest.TestLoader().loadTestsFromTestCase(test_Atomic.TestAtomic)

runner = unittest.TextTestRunner()

pnnt(runner.run(suite))

這里,我們已經創建了一個單獨的套件,這是通過讓unittest模塊讀取test_Atomic 模塊實現的,并且使用其每一個test*()方法(本實例中是test_list_success()、test_list_fail(),稍后很快就會看到)作為測試用例。

我們現在將查看TestAtomic類的實現。對通常的子類(不包括unittest.TestCase 子類),不怎么常見的是,沒有必要實現初始化程序。在這一案例中,我們將需要建立 一個方法,但不需要清理方法,并且我們將實現兩個測試用例。

def setUp(self):

self.original_list = list(range(10))

我們已經使用了 unittest.TestCase.setUp()方法來創建單獨的測試數據片段。

def test_list_succeed(self):

items = self.original_list[:]

with Atomic.Atomic(items) as atomic:

atomic.append(1999)

atomic.insert(2, -915)

del atomic[5]

atomic[4]= -782

atomic.insert(0, -9)

self.assertEqual(items,

[-9, 0, 1, -915, 2, -782, 5, 6, 7, 8, 9, 1999])

def test_list_fail(self):

items = self.original_list[:]

with self.assertRaises(AttributeError):

with Atomic.Atomic(items) as atomic:

atomic.append(1999)

atomic.insert(2, -915)

del atomic[5]

atomic[4] = -782

atomic.poop() # Typo

self.assertListEqual(items, self.original_list)

這里,我們直接在測試方法中編寫了測試代碼,而不需要一個內部函數,也不再使用unittest.TestCase.assertRaised()作為上下文管理器(期望代碼產生AttributeError)。 最后我們也使用了 Python 3.1 的 unittest.TestCase.assertListEqual()方法。

正如我們已經看到的,Python的測試模塊易于使用,并且極為有用,在我們使用 TDD的情況下更是如此。它們還有比這里展示的要多得多的大量功能與特征——比如,跳過測試的能力,這有助于理解平臺差別——并且這些都有很好的文檔支持。缺失的一個功能——但nose與py.test提供了——是測試發現,盡管這一特征被期望在后續的Python版本(或許與Python 3.2—起)中出現。

性能剖析(Profiling)

如果程序運行很慢,或者消耗了比預期內要多得多的內存,那么問題通常是選擇的算法或數據結構不合適,或者是以低效的方式進行實現。不管問題的原因是什么, 最好的方法都是準確地找到問題發生的地方,而不只是檢査代碼并試圖對其進行優化。 隨機優化會導致引入bug,或者對程序中本來對程序整體性能并沒有實際影響的部分進行提速,而這并非解釋器耗費大部分時間的地方。

在深入討論profiling之前,注意一些易于學習和使用的Python程序設計習慣是有意義的,并且對提高程序性能不無裨益。這些技術都不是特定于某個Python版本的, 而是合理的Python程序設計風格。第一,在需要只讀序列時,最好使用元組而非列表; 第二,使用生成器,而不是創建大的元組和列表并在其上進行迭代處理;第三,盡量使用Python內置的數據結構 dicts、lists、tuples 而不實現自己的自定義結構,因為內置的數據結構都是經過了高度優化的;第四,從小字符串中產生大字符串時, 不要對小字符串進行連接,而是在列表中累積,最后將字符串列表結合成為一個單獨的字符串;第五,也是最后一點,如果某個對象(包括函數或方法)需要多次使用屬性進行訪問(比如訪問模塊中的某個函數),或從某個數據結構中進行訪問,那么較好的做法是創建并使用一個局部變量來訪問該對象,以便提供更快的訪問速度。

Python標準庫提供了兩個特別有用的模塊,可以輔助調査代碼的性能問題。一個是timeit模塊——該模塊可用于對一小段Python代碼進行計時,并可用于諸如對兩個或多個特定函數或方法的性能進行比較等場合。另一個是cProfile模塊,可用于profile 程序的性能——該模塊對調用計數與次數進行了詳細分解,以便發現性能瓶頸所在。

為了解timeit模塊,我們將查看一些小實例。假定有3個函數function_a()、 function_b()、function_c(), 3個函數執行同樣的計算,但分別使用不同的算法。如果將這些函數放于同一個模塊中(或分別導入),就可以使用timeit模塊對其進行運行和比較。下面給出的是模塊最后使用的代碼:

if __name__ == "__main__":

repeats = 1000

for function in ("function_a", "function_b", "function_c"):

t = timeit.Timer("{0}(X, Y)".format(function),"from __main__ import {0}, X, Y".format(function))

sec = t.timeit(repeats) / repeats

print("{function}() {sec:.6f} sec".format(**locals()))

賦予timeit.Timer()構造子的第一個參數是我們想要執行并計時的代碼,其形式是字符串。這里,該字符串是“function_a(X,Y)”;第二個參數是可選的,還是一個待執行的字符串,這一次是在待計時的代碼之前,以便提供一些建立工作。這里,我們從 __main__ (即this)模塊導入了待測試的函數,還有兩個作為輸入數據傳入的變量(X 與Y),這兩個變量在該模塊中是作為全局變量提供的。我們也可以很輕易地像從其他模塊中導入數據一樣來進行導入操作。

調用timeit.Timer對象的timeit()方法時,首先將執行構造子的第二個參數(如果有), 之后執行構造子的第一個參數并對其執行時間進行計時。timeit.Timer.timeit()方法的返回值是以秒計數的時間,類型是float。默認情況下,timeit()方法重復100萬次,并返回所 有這些執行的總秒數,但在這一特定案例中,只需要1000次反復就可以給出有用的結果, 因此對重復計數次數進行了顯式指定。在對每個函數進行計時后,使用重復次數對總數進行除法操作,就得到了平均執行時間,并在控制臺中打印出函數名與執行時間。

function_a() 0.001618 sec

function_b() 0.012786 sec

function_c() 0.003248 sec

在這一實例中,function_a()顯然是最快的——至少對于這里使用的輸入數據而言。 在有些情況下一一比如輸入數據不同會對性能產生巨大影響——可能需要使用多組輸入數據對每個函數進行測試,以便覆蓋有代表性的測試用例,并對總執行時間或平均執行時間進行比較。

有時監控自己的代碼進行計時并不是很方便,因此timeit模塊提供了一種在命令行中對代碼執行時間進行計時的途徑。比如,要對MyModule.py模塊中的函數function_a()進行計時,可以在控制臺中輸入如下命令:python3 -m timeit -n 1000 -s "from MyModule import function_a, X, Y" "function_a(X, Y)"(與通常所做的一樣,對 Windows 環境,我們必須使用類似于C:Python3lpython.exe這樣的內容來替換python3)。-m選項用于Python 解釋器,使其可以加載指定的模塊(這里是timeit),其他選項則由timeit模塊進行處理。 -n選項指定了循環計數次數,-s選項指定了要建立,最后一個參數是要執行和計時的代碼。命令完成后,會向控制臺中打印運行結果,比如:

1000 loops, best of 3: 1.41 msec per loop

之后我們可以輕易地對其他兩個函數進行計時,以便對其進行整體的比較。

cProfile模塊(或者profile模塊,這里統稱為cProfile模塊)也可以用于比較函數 與方法的性能。與只是提供原始計時的timeit模塊不同的是,cProfile模塊精確地展示 了有什么被調用以及每個調用耗費了多少時間。下面是用于比較與前面一樣的3個函數的代碼:

if __name__ == "__main__":

for function in ("function_a", "function_b", "function_c"):

cProfile.run("for i in ranged 1000): {0}(X, Y)".format(function))

我們必須將重復的次數放置在要傳遞給cProfile.run()函數的代碼內部,但不需要做任何創建,因為模塊函數會使用內省來尋找需要使用的函數與變量。這里沒有使用顯式的print()語句,因為默認情況下,cProfile.run()函數會在控制臺中打印其輸出。下面給出的是所有函數的相關結果(有些無關行被省略,格式也進行了稍許調整,以便與頁面適應):

1003 function calls in 1.661 CPU seconds

ncalls tottime percall cumtime percall filename:lineno(function)

1 0.003 0.003 1.661 1.661 :1 ( )

1000 1.658 0.002 1.658 0.002 MyModule.py:21 (function_a)

1 0.000 0.000 1.661 1.661 {built-in method exec}

5132003 function calls in 22.700 CPU seconds

ncalls tottime percall cumtime percall filename:lineno(function)

1 0.487 0.487 22.700 22.700 : 1 ( )

1000 0.011 0.000 22.213 0.022 MyModule.py:28(function_b)

5128000 7.048 0.000 7.048 0.000 MyModule.py:29( )

1000 0.00 50.000 0.005 0.000 {built-in method bisectjeft}

1 0.000 0.000 22.700 22.700 {built-in method exec}

1000 0.001 0.000 0.001 0.000 {built-in method len}

1000 15.149 0.015 22.196 0.022 {built-in method sorted}

5129003 function calls in 12.987 CPU seconds

ncalls tottime percall cumtime percall filename:lineno(function)

1 0.205 0.205 12.987 12.987 :l ( )

1000 6.472 0.006 12.782 0.013 MyModule.py:36(function_c)

5128000 6.311 0.000 6.311 0.000 MyModule.py:37( )

1 0.000 0.000 12.987 12.987 {built-in method exec}

ncalls ("調用的次數")列列出了對指定函數(在filename:lineno(function)中列出) 的調用次數。回想一下我們重復了 1000次調用,因此必須將這個次數記住。tottime (“總的時間”)列列出了某個函數中耗費的總時間,但是排除了函數調用的其他函數內部花費的時間。第一個percall列列出了對函數的每次調用的平均時間(tottime // ncalls)。 cumtime ("累積時間")列出了在函數中耗費的時間,并且包含了函數調用的其他函數內部花費的時間。第二個percall列列出了對函數的每次調用的平均時間,包括其調用的函數耗費的時間。

這種輸出信息要比timeit模塊的原始計時信息富有啟發意義的多。我們立即可以發現,function_b()與function_c()使用了被調用5000次以上的生成器,使得它們的速度至少要比function_a()慢10倍以上。并且,function_b()調用了更多通常意義上的函數,包括調用內置的sorted()函數,這使得其幾乎比function_c()還要慢兩倍。當然,timeit() 模塊提供了足夠的信息來查看計時上存在的這些差別,但cProfile模塊允許我們了解為什么會存在這些差別。正如timeit模塊允許對代碼進行計時而又不需要對其監控一樣,cProfile模塊也可以做到這一點。然而,從命令行使用cProfile模塊時,我們不能精確地指定要執行的 是什么——而只是執行給定的程序或模塊,并報告所有這些的計時結果。需要使用的 命令行是python3 -m cProfile programOrModule.py,產生的輸出信息與前面看到的一 樣,下面給出的是輸出信息樣例,格式上進行了一些調整,并忽略了大多數行:

10272458 function calls (10272457 primitive calls) in 37.718 CPU secs

ncalls tottime percall cumtime percall filename:lineno(function)

10.000 0.000 37.718 37.718 :1 ( )

10.719 0.719 37.717 37.717 :12( )

1000 1.569 0.002 1.569 0.002 :20(function_a)

1000 0.011 0.000 22.560 0.023 :27(function_b)

5128000 7.078 0.000 7.078 0.000 :28( )

1000 6.510 0.007 12.825 0.013 :35(function_c)

5128000 6.316 0.000 6.316 0.000 :36( )

在cProfile術語學中,原始調用指的就是非遞歸的函數調用。

以這種方式使用cProfile模塊對于識別值得進一步研究的區域是有用的。比如,這里 我們可以清晰地看到function_b()需要耗費更長的時間,但是我們怎樣獲取進一步的詳細資料?我們可以使用cProfile.run("function_b()")來替換對function_b()的調用。或者可以保存完全的profile數據并使用pstats模塊對其進行分析。要保存profile,就必須對命令行進行稍許修改:python3 -m cProfile -o profileDataFile programOrModule.py。 之后可以對 profile 數據進行分析,比如啟動IDLE,導入pstats模塊,賦予其已保存的profileDataFile,或者也可以在控制臺中交互式地使用pstats。

下面給出的是一個非常短的控制臺會話實例,為使其適合頁面展示,進行了適當調整,我們自己的輸入則以粗體展示:

$ python3 -m cProfile -o profile.dat MyModule.py

$ python3 -m pstats

Welcome to the profile statistics browser.

% read profile.dat

profile.dat% callers function_b

Random listing order was used

List reduced from 44 to 1 due to restriction

Function was called by...

ncalls tottime cumtime

:27(function_b) - 1000 0.011 22.251 :12( )

profile.dat% callees function_b

Random listing order was used

List reduced from 44 to 1 due to restriction

Function called...

ncalls tottime cumtime

:27(function_b)-

1000 0.005 0.005 built-in method bisectJeft

1000 0.001 0.001 built-in method len

1000 1 5.297 22.234 built-in method sorted

profile.dat% quit

輸入help可以獲取命令列表,help后面跟隨命令名可以獲取該命令的更多信息。比如, help stats將列出可以賦予stats命令的參數。還有其他一些可用的工具,可以提供profile數據的圖形化展示形式,比如 RunSnakeRun (), 該工具需要依賴于wxPython GUI庫。

使用timeit與cProfile模塊,我們可以識別出我們自己代碼中哪些區域會耗費超過預期的時間;使用cProfile模塊,還可以準確算岀時間消耗在哪里。

以上內容部分摘自視頻課程 05后端編程Python-19調試、測試和性能調優(下) ,更多實操示例請參照視頻講解。跟著張員外講編程,學習更輕松,不花錢還能學習真本領。

Python中有哪些可以被import

不是importmath 而是: import math,中間是有空格的。

這是讓python導入數學模塊,使python支持一系列數學函數和常量。

比如math.pi 就是常數 π (3.14159...)

比如math.acos(x) 就是反余弦函數

其它的模塊有很多,都可以在python官網上可以查到,比如:

這里就是2.7版本所支持的外部模塊。

不同的模塊可以實現不同的功能,比如re模塊就是正則模塊,可以實現常用的正則替換、提取等功能、telnetlib模塊可以實現telnet功能等!

Python在程序設計中,函數的使用有哪些作用?請具體闡述。

在所有編程語言中,函數的作用都是相似的

在開發程序的時候,某一段代碼需要執行很多次,為了提高編寫的效率以及代碼的復用,需要把這一段代碼封裝成一個模塊,這就是函數

20201014-python高級函數作業

1、定義一個使用不定長參數的函數,并在函數中打印出參數及其類型,統計傳入參數的個數

def test(a,b,*args,c=10,**kwargs): ??

print("a=",a)

print("b=",b)

print("args=",args)

print("c=",c)

print("kwargs=",kwargs)

print("參數總長度:",1+1+len(args)+1+len(kwargs))

test(1,2,3,4,5,m=4)

def test(a,b,c=10,*args,**kwargs): ? ?

print("a=",a)

print("b=",b)

print("args=",args)

print("c=",c)

print("kwargs=",kwargs)

print("參數總長度:",1+1+len(args)+1+len(kwargs))

test(1,2,3,4,5,m=4)

2、定義一個函數max,接受的參數類型是數值,最終返回兩個數中的最大值

def max(num1,num2):

if num1num2:

return num1

else:

return num2

3、定義一個函數min,接受的參數類型是數值,最終返回兩個數中的最小值

def min(num1,num2):

if num1num2:

return num1

else:

return num2

4、分別定義加減乘除四個函數實現兩個數之間的加減乘除操作

# 加法

def add(a,b):

return a+b

# 減法

def sub(a,b):

return a-b

# 乘法

def mul(a,b):

return a*b

# 除法

def div(a,b):

if b==0:

return 0

else:

return a/b

5、分別定義加減乘除四個函數,然后實現多個數之間的累加累減累除累乘操作,如[1,2,3,4,5],累加即是1+2+3+4+5,注意當使用除法時,應判斷被除數不能為0

#累加

def add(a,b,*args):

s=a+b

for i in args:

s=s+i

return s

#累減

def sub(a,b,*args):

s=a-b

for i in args:

s=s-i

return s

#累乘

def mul(a,b,*args):

s=a*b

for i in args:

s=s*i

return s

#累除

def div(a,b,*args):

if b==0:

return a

else:

s=a/b

for i in args:

if i ==0:

continue

else:

s=a/b

return s

6、使用不定長參數定義一個函數max_min,接受的參數類型是數值,最終返回這些數中的最大值和最小值——錯題

def max_min(*args):

max=0

min=0

if len(args)==0:

return 0,0

elif len(args)==1:

return args[0],args[0]

else:

max=args[0]

min=args[0]

for i in args:

if maxi:

max=i

if mini:

min=i

return max,min

7、定義一個函數,返回n的階乘的最后結果,并打印出如5階乘"5!=120”的效果——錯題

def f(n):

s=1

for i in range(n):

s=s*(i+1)

print('%s!=%s' %(n,s))?

f(5)

8、定義一個函數,返回由n(包含n)以內的奇數或者偶數組成的列表,默認返回全是奇數的列表

def?f(n,type='j'):

ls=[]

if?type=='j':

for?i?in?range(1,n+1):

if?i%2==1:

ls.append(i)

if?type=='o':

for?i?in?range(1,n+1):

if?i%2==0:

ls.append(i)

return?ls

9、定義一個函數,打印出n以內的所有的素數(指在大于1的自然數中,除了1和它本身以外不再有其他因數的自然數。)——錯題

def f(n):

ls=[2]

for i in range(3,n):

for j in range(2,i):

if i%j == 0:

break

else:

ls.append(i)

print(ls)

10、定義一個函數,接受三個參數,分別為字符串s、數值a1、數值a2,將字符串s從下標a1開始的a2個字符刪除,并把結果返回,a2默認值為0——錯題

def cut_str(s,a1,a2=0):

length = len(s)

if a1+1length or a2 == 0:

return s

else:

s1 = s[:a1]

s2 = s[a1+a2:]

return s1+s2

print(cut_str("hello",6,1))

11、請定義兩個函數,一個函數畫正方形,一個函數畫三角形,并且可以從鍵盤輸入值來決定畫正方形還是畫三角形以及決定是否退出程序

我的答案:

import turtle

def z():

for i in range(4):

turtle.fd(20)

turtle.right(90)

def s():

for i in range(3):

turtle.fd(20)

turtle.right(120)

m=input('請輸入值,z畫正方形,s畫三角形,其它任意鍵退出程序:')

if m =='z':

z()

elif m=='s':

s()

else:

print('退出程序')

官方答案:

def square(n):

for i in range(n):

print("*"*n)

def triangle(n):

for i in range(n):

print("*"*(i+1))

12、定義函數findall,實現對字符串find方法的進一步封裝,要求返回符合要求的所有位置的起始下標,如字符串"helloworldhellopythonhelloc++hellojava",需要找出里面所有的"hello"的位置,最后將返回一個元組(0,10,21,29),即將h的下標全部返回出來,而find方法只能返回第一個——沒懂

def findall(string, s):

ret = []

if s=='':

return ret

while True:

index = string.find(s)

if index != -1:

if len(ret)!=0:

ret.append(ret[-1]+index+len(s))

else:

ret.append(index)

string = string[index+len(s):]

else:

break

return ret

print(findall("abc-abc-abc-","-"))

python函數深入淺出 17.random.randint()函數詳解

random() 函數命名來源于英文單詞random(隨機)。

randint是random + integer拼接簡寫而成,代表隨機一個整數

Python標準庫中的random函數,可以生成隨機浮點數、整數、字符串,甚至幫助你隨機選擇列表序列中的一個元素,打亂一組數據等。

random.randint() 函數的例子:

用于生成一個指定范圍內的整數。其中參數a是下限,參數b是上限,生成的隨機數n:a=n=b

a必須小于或等于b,否則報錯。

其他random的方法:

隨機數是用于生成測試入參的好辦法,也常見于各種需要隨機的場合。

但是每次隨機帶來的不確定性也會造成某些驗證功能的困難,因此可以使用random.seed()通過指定隨機的種子值保證每次生成隨機數是同一序列的偽隨機數。觀察下面的輸出:

對基礎運行環境有疑問的,推薦參考: python函數深入淺出 0.基礎篇

python-第十三課-函數實例-萬花筒

本節中的萬花筒通過彩色隨機螺旋線來實現。我們首先定義一個函數draw(),這個函數用來繪制一個螺旋線,函數中的畫筆起始位置的坐標為函數的兩個形參。然后調用函數的時候使用一個for循環來實現多次調用函數,同時,函數的兩個實參由random模塊生成的隨機數組成。


本文標題:c語言聲明函數在主函數后,c語言可以在主函數里定義函數嗎
瀏覽地址:http://m.jcarcd.cn/article/hdiidd.html
主站蜘蛛池模板: 国产大片在线观看 | 91啪国自产中 | 青草国产 | 91精品人| 国产精品亚洲一区 | 国产激情免费播放 | 日本不卡一二三区 | 国产视频精品免费 | 国产一区二区在线观 | 国产一区免费观 | 国产欧美日韩专区 | 日韩欧国产 | 成人午夜福利后入 | 97精品视频 | 韩国日本在线电影 | 91香蕉导航 | 日韩争樱花起源 | 国产精品日韩在线 | 国产激情免费 | 欧美性色黄 | 国产精品视频色拍拍 | 区二区网站 | 91自产啪 | 日本高清www片 | 日韩高清在线第一页 | 91神马高 | 日韩在线观看高清 | 国产二区色综合 | 九色老女人 | 91露脸国| 日本特级片 | 日韩专区中文字幕 | 日韩伦理在线播放成 | 91黑料在线观看 | 成人影视福利 | 日本中文高清国产 | 91秘入口 | 三级特黄60分钟在 | 福利导航h污下载 | 91午夜福利影视 | 精品在线VVV|